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Asymptotic methods are used to describe the nonlinear self-interaction between a pair of oblique

instability modes that eventually develops when initially linear, spatially growing instability

waves evolve downstream in nominally two-dimensional, unbounded or semibounded, laminar

shear flows. The first nonlinear reaction takes place locally within a so-called "critical layer"

with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique

instability waves together with an associated plane wave. The instability wave amplitudes, which

are completely determined by nonlinear effects within the critical layer, satisfy a pair of integral

differential equations with quadratic to quartie-type nonlinearities. The most important feature

of these equations is the oblique mode, self-interaction term that usually leads to a sing'ularity at

a finite downstream position. It is shown that this type of interaction is quite ubiquitous and is
the dominant nonlinear interaction in many apparently unrelated shear flows---even when the

oblique modes do not exhibit the most rapid growth in the initial linear stage.

I. INTRODUCTION

This paper is mainly a review and synthesis of some

recent developments in nonlinear stability theory [but

some new results, such as Eqs. (39)-(43), are also de-
rived]. It is concerned with the first nonlinear interactions

that come into play when a pair of spatially growing and

initially linear oblique instability waves evolve downstream

in nominally two-dimensional, unbounded or semi-
bounded, laminar shear flows. There are, of course, numer-

ous studies of oblique-mode interactions in the literature
(e.g., Goldstein and Choi; 1 Chang and Malik, 2 Thumm,

Wolz, and Fasel; 3Goldstein and Choi, l Chang and Malik, 2

and Wu, Lee, and Cowley 4 consider the interaction of two

oblique modes, while Craik, 5 Goldstein and Lee, 6 Herbert, 7

Spalart and Yang, 8 and Wu 9 consider the interaction of

two oblique modes with a plane wave), but this review is

only concerned with the rigorously based analytical treat-

ments, i.e., the ones that use a systematic asymptotic ap-

proach to study these interactions. Comparison with ex-

periment will be discussed in a forthcoming paper and is
not considered herein.

The instability waves are (for definiteness) assumed to

arise from some sort of small-amplitude, time-harmonic

excitation device, as indicated schematically in Fig. 1. This
means that the initial motion just downstream of this de-

vice will also have harmonic time dependence and be well

described by linear instability wave theory. The Reynolds

number R is assumed to be large enough so that the flow is

nearly parallel.

While the peak linear growth rate is usually of the
same order as the inverse shear-layer thickness A -1 in

highly unstable flows, such as free shear layers, jets, and

(usually separated) wall boundary layers with O(1)

adverse-pressure gradients, it is usually small compared to
A- 1 in more stable flows, such as flat-plate boundary layers

or unseparated boundary layers with weak adverse-

pressure gradients. However, mean flow divergence effects

will usually cause the growth rate to be small (relative to
A-l) by the time nonlinear effects set in, even in the more

unstable flows. This is because, in the latter type of flows,

the excitation is usually located in the vicinity of the peak

local growth rate, of the relevant normalized instability
growth-rate curve---such as the one shown schematically

in Fig. 2. The growth rate should therefore decrease as the

instability waves propagate downstream into a region

where (in most cases) the shear-layer thickness A will have
increased.

This suggests that the method of matched asymptotic

expansions can be used to describe these flows: with an

"inner" nonlinear region, in which the instability-wave

growth rate is small, and a much larger "outer" region in

which the unsteady flow is governed by linear dynamics,

but in which mean-flow divergence effects are important

(see Fig. 3). A uniformly valid composite solution that

applies everywhere in the linear and nonlinear regions can

then be obtained in one of the usual ways--say, by multi-

plying the linear and nonlinear solutions together and then
dividing through by their common part in the overlap do-

main (that always exists between the inner and outer re-

gions).

II. THE OUTER LINEAR FLOW

We begin by considering the initial linear stage just
downstream of the excitation device. In some flows, such

as supersonic free shear layers, or fiat-plate boundary lay-

ers in the relatively low, supersonic Math number regime,
where the so-called, first-mode instability is dominant, the

most rapidly growing mode is, in fact, an oblique wave, so
that the oblique-mode self-interaction that is of interest

herein is likely to be the first nonlinear interaction to occur.
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FIG. 1. Typical shear flow configurations.

In which case, it is reasonable to begin the unsteady mo-

tion with a pair of oblique (equiamplitude) instability-

wave modes with the same streamwise wave number a/2

and scaled frequency o9"A/2 U_o = a/c/2 and equal and op-

posite spanwise wave numbers (+B). (Here U_ is the

characteristic velocity of the flow, and the subscript r is
used to denote the real part of the wave number a and

phase speed c, as well as other quantities to which it is

appended.) These two waves combine to form a standing

wave in the spanwise direction that propagates only in the
direction of flow--which is the situation that most fre-

quently occurs in wave excitation experiments that typi-

cally involve longish excitation devices placed perpendicu-
lar to the flow.

However, in most flows, it is the plane wave that ex-

hibits the most rapid growth in the initial linear stage, even

though the oblique modes ultimately exhibit the most rapid

growth upon entering some intermediate (parametric res-
onance) stage. This intermediate stage can be treated si-

multaneously with the self-interaction stage (which is of

interest here) if we begin the unsteady motion with a res-

onant triad of instability waves in the initial linear

region--a plane fundamental frequency wave, with scaled

frequency og*A/U®, and a pair of oblique equiamplitude

subharmonic waves, (again) with the same streamwise

wave number and frequency, ½at and ½arcr, respectively,

and equal but opposite spanwise wave numbers ±/_.

For present purposes, the term "resonance" simply

means that the three waves all have the same phase speed

cr. For the small growth rates and large Reynolds numbers
that are of interest here, this occurs when

Normalized

linear --_iA
growth rate

/-- Excitation usually
I near maximum

h rate

Normalized frequency

FIG. 2. Typical linear growth rate curve.
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FIG. 3. Asymptotic structure of flow.

,8=( x/'3/2)a,, (I)

which means that the oblique instability waves make a 60*

angle with the direction of flow. We can, of course, allow
that angle to be arbitrary in flows where the oblique modes

can grow more rapidly than the plane wave and resonant

reaction with the latter is not required to enhance the

growth rate of the former. Our choice of the initial linear

modes may seem somewhat artificial, but the linear and

parametric resonance stages act as narrow-band filters that

are able to select out these disturbances from relatively

generic background disturbance fields. Moreover, we even-
tually show (at the end of Sec. III) that the resonance

condition ( 1 ) does not have to be satisfied exactly and that
the analysis actually applies to a fairly broad range of wave
numbers about the resonant condition.

Since our scaling requires that the instability-wave

growth rates be small in the nonlinear region of the flow,

and since the Reynolds number R is assumed to be large,

the first modal interaction is confined to a localized region
centered around the "critical level" where the mean-flow

velocity, say U¢, is equal to the common phase velocity cr

of the two or three modes that interact there (see Fig. 4).

The flow outside this so-called "critical layer" is still gov-

erned by linear dynamics, which means that it is given by
a locally parallel two-dimensional mean flow, say U(y),

plus a pair of oblique instability-wave modes along with a

plane (i.e., two-dimensional) instability wave. There is also

Outer edge of
boundary/shear layer

yer (linear dynamics apply)yer

Wall/inner edge of shear layer

FIG. 4. Structure of the nonlinear region.
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a spanwise variable mean-flow distortion--to be discussed
more fully below--that is generated by nonlinear effects

within the critical layer.

The (external) transverse velocity fluctuation v is then

given by

--eat2 Re[sec OA(xo)_(y)e ix/2 cos ZOm

I

/e'_ 1/3 .

+[-_) Ao(xo)*o(y)eiX l, (2)

where

X=--a_(x--a_t), (3)

Z=--a_z, (4)

a=a[_+O((1 e _1/3]1, c5)

c°=a[c+O((1-_) a) l' (7)

1/3
) (8)

0--tan-l(-_). (9)

and Re denotes the real part. The streamwise, transverse,

and spanwise coordinates, normalized by the shear-layer

thickness 4, are x, y, and z, respectively; t denotes the

normalized time; and 0 denotes the propagation angle of
the oblique mode. The scaled spanwise wave number,

streamwise wave number, and phase speed _, 5, and 5,

respectively, are purely real. The first term in this equation

[i.e., Eq. (2)] represents the oblique modes, while the sec-

ond represents the plane wave. Here • and _0, are the

linear normal mode shapes which can, in general, be found

by solving the appropriate Rayleigh equation (but, see be-

low). Also, A and A 0, which depend only on the stream-

wise coordinate (and then only through the scaled stream-

wise variable x 0, which varies on the length scale of the

nonlinear region which, not very surprisingly, turns out to

be the reciprocal instability-wave growth rate) determine

the overall growth of the instability waves and are, there-

fore, the most important quantities in these equations.
They are completely determined by the nonlinear dynam-

ics within the critical layer and are, in practice, found by

equating the velocity jump across the critical layer, as cal-

culated from the external linear solution (i.e., the solution

to Rayleigh's equation), to the velocity jump calculated
from the internal nonlinear solution within the critical

layer. The amplitude scale factors for the oblique and plane
waves are e and e(E/a),/3, respectively, where e is always
much less than a.

Notice that the growth rate and oblique mode ampli-
tude scalings a(e/a) '/3 and e, respectively, are related.

This relation ensures that growth rate and nonlinear (or

mode interaction) effects will both impact the external lin-

ear solution at the same asymptotic order. It is dictated by
the requirement that the nonlinear stage correspond to the

first stage of evolution beyond the initial linear region, i.e.,

that the nonlinear solutions match onto the upstream lin-

ear solutions in the matched asymptotic sense. The

Benney-Bergeron H parameter

_.= 1/Eo_R, (10)

where R is the Reynolds number based on the shear layer

thickness /% is (in the present context) a measure of the

relative importance of viscous to growth-rate effects within

the critical layer, i.e., these effects will be of the same order

when _.= O( 1 ).

The wavelength scale factor a can be set to unity when

the initial linear instability wave has an order-one wave-

length. In which ease the linear, instability-wave growth
rate will be 10(e x/3) as the nonlinear region is approached

(which fixes the location of this region). This will usually

be the ease for highly unstable flows such as free shear
layers and (usually separated) boundary layers with order-

one, adverse-pressure gradients.
For somewhat more stable flows, such as boundary

layers with sufficiently small pressure gradients [ = O(0_)],

a will be small compared to unity, and the linear growth
rate will scale like a4 over most of the unstable region. 6The

nonlinear critical-layer effects will therefore come into play

over most of the unstable region (and not just near the
neutral curve), if we take

[ E _ '/3

a_) =a 4 when /1.=O(1),

(11)
[ ff _'/3

And for even more stable flows, such as accelerating
boundary layers 9J2 with O(1) pressure gradients, the

growth rate will be O(o 2) over the main part of the unsta-

ble region. In which case, the nonlinear critical-layer ef-

fects will come into play in the major portion of this region
if we take

(E/ZO')I/3=O " as A--, oo. (12)

Finally, we note that the phase speeds of the oblique

and plane-wave modes, c and co respectively, will only be
equal (i.e., resonance will only occur) if _ and _ satisfy

( 1 ), or equivalently if a and/3 satisfy ( 1 ) to within order
a[el( l +]_ )a] '/3.

IlL CRITICAL-LAYER DYNAMICS AND THE
AMPLITUDE EQUATIONS

The lowest-order critical-layer equations turn out to be

linear and correspond to a balance between growth rate

(i.e., nonequilibrium), mean-flow convection, and viscous-
diffusion effects. Benney and Maslowe '3 were the first to
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show that nonlinear and nonequilibrium effects could si-

multaneously enter the critical-layer equations. Here the
nonlinearity is weak in the sense that it does not affect the

lowest-order equations, but enters only through inhomoge-

neous terms in a higher-order problem. This ultimately

means that the all-important amplitude functions A and A 0

can be determined from a single pair of amplitude equa-

tions. The relevant equations---corresponding to the gen-

eralized scaling ( 3)-(8)---can easily be inferred from the

specific results of Refs. 1, 6, 4, and 33. They are

I

dE

(13)

E x 1

[K3Ao(Xl)A(x2).4*(2Xl+X2--2x)+K4Aixa)Ao(xz).4*(xl+2x2--2x)lax2dxl

;Lf_-_-ip_ Xl x2 K_(Xl)A(x2)A(x3)A*(Xl-_X2"q-x3--2x)Kx3Nx2NXl, (14)

--oo oo oO

where the asterisks denote complex conjugates, _,, .4, and

A 0 are suitably renormalized, and shifted variables corre-

sponding to x 0, A, and A o, respectively, and _ and

Y( 171 = 1) are complex parameters which are dependent

on the basic mean flow. The scaled linear growth rates of

the oblique and plane modes are K and the real part of Xo,

respectively. The imaginary part of to, Eoi, represents the

initial phase shift between the oblique and plane-wave
modes.

Notice that these are integrodifferential equations of

the type first obtained by Hickernell 1° rather than the usual

ordinary differential equations that arise in classical
Stuart-Watson-Landau 14-16 theory. The integrals arise

from upstream history effects that produce a gradual phase

shifting between modes when the nonlinearity takes place

within a nonequilibrium (or growth dominated) critical

layer. This occurs because the evolution or growth-rate

effects have a dominant (i.e., first-order) effect on the flow

within the critical layer, but only weakly affect the flow

outside the critical layer. The nonlinear terms are therefore

influenced by the growth-rate effects when they are gener-

ated within the critical layer, but not when they are gen-

erated outside the critical layer, as in the classical theory.

The nonlinear kernel functions K 1 through K 5 will be de-

scribed subsequently. They turn out to be simple polyno-

mial functions of the streamwise (and corresponding inte-

gration) variables in the inviscid limit 2-_ 0.

Classical Stuart-Watson-Landau theory suppresses

the critical-layer effects, which can only be justified when

the Reynolds number is assumed to be sufficiently small.

For inviscidly unstable flows, this assumption is inconsis-
tent with the locally paraUel flow assumption 17-19 (which is

required for the external flows that are of interest herein).

In high-Reynolds-number viscously unstable flows, classi-

cal weakly nonlinear theory is (at best) restricted to a

rather smallish region in the vicinity of the lower branch of

the neutral stability curve, in which case the size of the

upstream linear region would have to be excessively small.

Moreover, nonlinearity usually occurs in the vicinity of the

upper branch of the neutral stability curve in most of the

relevant boundary-layer-type experiments. 2°

To be consistent with our requirement that the solu-
tion evolve from an initially linear stage, the amplitude

Eqs. (13) and (14) usually have to be solved subject to the

upstream boundary conditions,

.4--,a(°)e _, Ao_e _°_ as _--oo, (15)

so that they match onto the linear, small growth-rate so-
lution far upstream (but see Sec. VII for an important

exception to this). Notice that only the first term on each

of the right-hand sides of Eqs. _ 13) and (14) contributes
to these equations when A and A 0 are sufficiently small--as

they are initially--and that (15) is then an exact solution

to the resulting equations. We therefore refer to these

terms as the linear growth-rate terms.

We include the linear phase shift r0i to allow for an

appropriate amount of wave-number detuning in the anal-
yses, which means that the resonance (1) does not neces-

sarily have to be exact and that the analysis actually ap-
plies to a relatively broad wave-number range about this
resonance condition.

IV. THE MEAN FLOW CHANGE

A significant feature of the present analysis is that the

nonlinear critical-layer interaction produces a spanwise-

variable, mean-flow change

u =e Re ffo(y,xo)e 2iz (16)

that is of the same order as the oblique-mode instability
wave [see Eq. (2)] that initially produces the interaction.

However, the associated cross-flow velocities

{ E _ 1/3

v=oe_-_) Reffo e2iz

and

{ 6_ 1/3

w=e_r) Rew0 e2iz

turn out to be somewhat smaller than this.

(17)
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The unexpectedly large value of the spanwise distor-

tion of the streamwise flow might require some explana-

tion. It occurs because the streamwise velocity fluctuation

of the external linear flow has a singularity at the critical

layer. This makes the lowest-order velocity fluctuation (as-

ymptotically) much larger in the critical layer than in the

external flow. This fluctuation is therefore able to generate

higher-order nonlinear terms oc [A [2 that are of the same

asymptotic order as the streamwise velocity fluctuation in
the external flow.

The transverse velocity amplitude T0 is the product of
a function of the slow variable Xo and a function of the

transverse coordinate y, which can be found by numeri-

cally solving an appropriate steady Rayleigh equation

when a= 1 but is given by the analytical long-wave solu-

tion to that equation in the long-wavelength limit a--,0. In

either case, the streamwise velocity amplitude if0 can then
be calculated from

afr0 U'

aXo= ---( V-o, (18)

where, as indicated above, U is the locally parallel base

flow of the shear layer, and the prime denotes differentia-

tion with respect to y. The slowly varying amplitude factor

is obtained by matching with the flow in the critical layer.
The result is that

f2ffOOC dXl(X--X 1)
oo

?X dx 2 e(-2X/3)(xl-x2)alA(x2)12, (19)

oo

where _. is a suitably renormalized variable corresponding
to A.

In the remainder of the paper, we discuss the implica-

tions of the fundamental Eqs. (13) and (14).

V. THE PURE OBLIQUE MODE INTERACTION

First, supposethat the scaled plane-wave amplitude A 0
(or equivalently A 0) is much less than that of the oblique

mode during the nonlinear interaction process. This would

be appropriate for the supersonic free-shear-layer and the

zero-pressure-gradient, low-Mach-number, supersonic

boundary-layer flows alluded to previously. The plane
wave will then be small when nonlinear effects come into

play, and the problem reduces to the one originally con-
sidered by Goldstein and Choi.1 In this case, the resonance

condition (1) need no longer be satisfied, and the second

term can be neglected on the right-hand side of (13),

which simply becomes

d.4 - - fZ xl

f ' o
X (x1 +x2--._)dx2 dxl. (20)

The kernel function K 2 is quite complex when viscous
effects are retained, as in Wu, Lee, and Cowley, 4 but in the

inviscid limit originally considered by Goldstein and
Choi,1 it is simply

14--

12-5-

10-5-

8--

6---

-ff 4-

2--"

o-:

-2=

-4

(dl (e) (a) (b)

-- -1 0 1 2 3 4 5

FIG. 5. Sealed amplitude ln l._ I versus the scaled streamwise coordinate

_" for _ = 1.2: ( a ) 0 = 15*; ( b ) 0 = 30*; ( e ) 0 = 60*; ( d ) 0 = 75*. Solid lines:

numerical solutions; dotted lines: local asymptotic solutions.

K2= --1tan2 0 cos 20(x'--x 1) [ (Z--X1)2-'F (X--X2) 2

--COS 20(x'--x2) (X l-x2) ]. (21)

Plane-wave resonance effects only occur when 0 = ¢r/3.

In which case, the first two terms can be neglected on the

right-hand side of (14). The plane wave will then be com-

pletely passive, will be driven by the oblique mode, and will

evolve on the fast streamwise length scale x'2=x'/60, where
So=O(Ao/A).

The inviseid kernel function vanishes when 0_Ir/4,

and the inviscid solution to (20) develops a singularity at

a finite downstream position, 1 say xs, at all other angles.
Therefore A exhibits explosive growth at this point, and the

local asymptotic expansion is given by

.4Na/CZs--_) 3+i'p as x'--.x-s, (22)

where the real parameters a and _bare related to the orig-
inal parameters _ and _ through quadratures.1

Figure 5 is a plot of the sealed amplitude function .4

versus the sealed streamwise coordinate Z, as calculated

numerically from Eqs. (20) and (21) for _y= 1.2 and var-

ious values of 0. The curves show that the solution initially

follows the linear growth given by

a2
d_=_A, (23)

and that the explosive growth occurs very suddenly once
nonlinearity comes into play. The dashed curves are the

local asymptotic expansions calculated from (22). This re-

sult implies that the overall wave-number/growth-rate

sealing is preserved right up to the singularity when a= 1,

which means that the overall asymptotic structure remains

intact until the instability wave amplitude is O( 1) every-

where in the flow, and the motion will then be governed by

the full nonlinear Euler equations in the next stage of ev-
olution.

However, growth-rate amplitude sealing is not pre-

served in the long-wavelength limit _r--,0 (corresponding
to, say, a weak adverse-pressure-gradient boundary layer).
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In this case, the critical layer expands to fill the wall layer,

causing the flow to become fully nonlinear while the insta-

bility amplitudes are still small. The next stage of evolution

is then characterized by a three-layer structure and is gov-

erned by the three-dimensional, unsteady "triple-deck"

equations, but without the viscous terms. This does not,

however, imply that the relevant scaling is the usual triple-

deck scaling in this stage.

In any case, the next stage of evolution is always

reached when the slow streamwise length scale is reduced

to the order of the wavelength scale A/tr. It is therefore not

very surprising that the full Euler equations are required

when this latter length scale is of the order of the shear-

layer thickness A and that the thin layer approximation to

the Euler equations (i.e., the inviscid triple-deck equa-

tions) provides an adequate approximation when the wave-

length is large compared to A.

Wu, Lee, and Cowley 4 showed that explosive growth

also occurs in the viscous case and that the local asymp-

totic behavior in the vicinity of the singularity is still given

by (22). However, they also showed that (as in Goldstein

and Leib 21 and Leib 22) there is a certain range of param-

eters where explosive growth does not occur when the vis-

cous parameter )L exceeds a certain (usually very large)

value. The instability wave will then reach a peak ampli-

tude at some fixed streamwise location and subsequently

undergo viscous decay downstream of that point.

Even more importantly, however, they show that the

nonlinearly induced spanwise variable mean-flow change

(16) does not decay in this case, but continues to grow

linearly with x 0. It is easy to show that a new stage of

evolution is then reached when ex= O( 1 ). The spanwise,

variable, mean-flow change corresponding to (16) will
then be O[or(e/@) 1/3] in this stage. The resulting flow is

affected by nonparallel effects and is governed by the lin-

earized Navier-Stokes equations when tr= 1 and is unaf-

fected by nonparallel mean-flow effects and is governed by

the three-dimensional, linearized, triple-deck equations
when t_-, 0.

Wu, Lee, and Cowley 4 also consider the strongly vis-

cous limit of Eq. (20) by letting 2--, oo in this result. The

corresponding initial (i.e., linear) critical layer is viscously
dominated in this limit, which means that it is a balance
between viscous diffusion and linear convection effects: It

does not involve nonequilibrium or growth-rate effects.

However, the ensuing nonlinear critical layer develops a

double-layer structure, in this limit, with an inner viscous-

dominated critical layer (in which the viscous forces again
balance the convection effects) and (as in Goldstein and

Hultgren 23) an outer "diffusion layer" in which the span-

wise variable mean-flow change is governed by the linear

diffusion equation.

The most important result is that the nonlinear effects
are completely determined by the flow in the diffusion layer

to lowest-order approximation and are therefore affected

by linear growth rate or nonequilibrium effects--just as

they are in the )L= O( 1 ) case. This, in turn, implies that the

corresponding evolution equation is still an integrodiffer-

ential equation in this limit. Namely,

/ 1 \ 1/3

dA=Pjtd2 -iF tan2 0 sin 2 0 cos 20[ 18)

(1)r×r g A Ift(Xl)12dXl, (24)
•J o0

where F denotes the gamma function in the usual notation,

_=X--I/3x ", .4-_-X--1/3A, (25)

and we assume that

_----X1/3_= O( 1 ). (26)

The viscous limit _. _ oo is mainly of interest in flows where

the wavelength or-1 is also large---as will become clear

when specific flows are discussed at the end of Sec. VII.

Equation (24) implies that

I-_ I _ e_ and arg .4 cce2_ (27)

when k and _ are real--as they always are in the long_
wavelength limit or< 1. This means that the magnitude of A

exhibits the same linear growth as in the nonresonant case,

while its phase oscillates with increasing frequency as 2

becomes large. This reduction in streamwise length scale

cannot, of course, persist indefinitely, and a new stage of

development must eventually come into play. We antici-

pate that this latter stage will again be described by a lim-

iting form of the general equation (13).

Vl. THE PURE PARAMETRIC RESONANCE
INTERACTION

Now consider the opposite limit where the scaled

oblique-mode amplitude A is very small and remains that

way during the entire resonant interaction. Notice that this
includes the case

A =O( e/_) 1/3, (28)

where the oblique mode has the same amplitude scaling as

the plane wave (as was originally pointed out by Goldstein
and Lee6).

Equation (13) now becomes

_--_=_t + i L o° K1Ao(xl)A*(2Xl--X)dXl, (29)

while the plane-wave amplitude equation (14) reduces to

the linear growth-rate equation

A0
= EoAo, (30)

which merely reflects the fact that there is no back-reaction

of the oblique mode on the plane wave. It may seem rather

surprising that this occurs even when the oblique-mode

amplitude is of the same order as that of the plane wave,

but the critical-layer velocity jump that would produce
back-reaction at this level turns out to be identically zero.

Since the second member of the oblique-mode equation
(29) is now linear in A, we refer to it as the parametric
resonance term. Its kernel function is given by 24

Kl =_( X--Xl )2e -(2/3)X(E- xl)3. (31)
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Goldstein and Lee 6 give an analytical solution to (29)-

(31 ) for the inviscid limit _.= 0, and Wundrow, Hultgren,
and Goldstein 25 extend it to the viscous case where

=O(1). These solutions show that the oblique-mode

instability-wave amplitude A can be represented by a su-

perposition of terms---each of which exhibits exponential
growth. They also show that A tends to be dominated by
the lower-order terms at small values of E, but that the

higher modes rapidly come into play and the "infinite tail"

of the series eventually determines the behavior of the so-
lution at large values of E. This leads to the conclusion that

ZNcoe(i/2)argiAoerorX/Sef7°-o_ (jO/411/4dy as x'-_, (32)

provided that the shifting of the coordinate _ is correct to

O(tr) in the long-wavelength limit where tr<l and x=_ffo.

Here, x'0 is a shiftedcoordinate corresponding to _, co is a

real constant, and A 0 is given byEq. (30).
It is important to notice that A 0 [as given by Eq. (301],

will continue to grow (provided, of course, that IAI re-

mains sufficiently small) until the plane wave becomes

strongly nonlinear within its own critical layer. This will
occur when -4o becomes O(tr/e) 2/3. Then, -4o will evolve on

the relatively slow scale E, but Eqs. (291 and (31 ) imply
that A must now evolve on the much faster scale _(tr/e) 1/6.

The amplitude .4 is then determined by appropriately res-

caled versions of Eqs. (29) and (31), but with A 0 treated

as a constant (or more correctly, a slowly varying func-

tion) and the linear growth-rate term missing. The critical-

layer thickness that produces this result, and therefore gov-
erns the development of A, will now be much thicker than

the plane-wave critical layer, which is of the same order as

the original critical-layer thickness. The net result is that

the amplitude A is still determined by Eq. (32), but with
the plane wave amplitude A o now given by the nonlinear

critical-layer solution of Goldstein and Leib, 19 Goldstein

and Hultgren, 23 Hultgren, 26 or Goldstein, Durbin, and

Leib, 27 depending on the particular flow being considered.

Since the oblique-mode amplitude is determined by Eq.

(32) [and therefore satisfies Eq. (29)] in this stage of de-

velopment, it will automatically match onto the full solu-

tion to Eqs. (291 and (31 ) when the appropriately shifted

streamwise variable approaches upstream infinity, and the

solution to these latter equations will then match onto the

linear, small growth-rate solution farther upstream [i.e., it

will satisfy the original upstream boundary condition

(15)1.
Notice that K 1 [as given by Eq. (31 )] becomes highly

Concentrated around E=x 1 in the limit as _.--. _. Equation

(29) therefore reduces to the ordinary differential equation

d-4 ^ 3i^^

_-_=t_4 +_- Ao A* , (33)

where 2 and .4 are defined by Eq. (25) and

.40(2) --7.-2/3A0. (34)

This is (to within a constant factor) the same as Craik's 5

equation, who used conventional Stuart-Watson-
Laudau 14-16 theory to derive his result. Notice that the

corresponding limiting form of the general plane-wave am-

plitude equation (13) is still the linear equation (30).
Equations (30), (33), and (34) imply that 5'25

.4_Coei_r/4e _+(3/4_Or)e_°'_ as 2-. oo, (35)

where C0 is a real constant; we have chosen the origin of
the 2 coordinates so that

.40=e_OA (36)

and, for simplicity, we assume that k 0 is real.

Since Eq. (35) does not reduce to Eq. (32) in the limit
_._ oo, the limits _--, _ and £'_ _ cannot be interchanged,
and there must be some intermediate solution that con-

nects Eqs. (32) and (35). In fact, it will be shown in a

forthcoming paper by Wundrow, Hultgren, and
Goldstein 25 that the approximation (33) becomes invalid

when /_2=0(ln_. 2/3) and that the nonequilibrium effects

become of the same order as the viscous effects for larger

values of 2, at which point the flow begins to evolve on the
faster scale

.,_"-_-,_1/3( X'-- L In _-2/3/ = _-'2/321, (37)

\ r0r /

where

1
21----2--7 In _2/3 (38)

XOr

is an appropriately shifted coordinate on the 2 scale, and is

determined by the full nonequilibrium equation (29), but

with A0(2) treated as a _owly varying function of E and
the linear growth term _4 treated as a higher-order effect.

The relevant solution has the Wentzel-Kramers-

Brillouin-Jeffreys (WKBJ) form and is easily shown to be

:- Co eilr/4 I_bqeZ2/3 f olb(g)dg, ( 39 )

where the prime denotes differentiation with respect to 2, b

is determined by the transcendental equation

3 ^ fo _ e--(2/3)_3--2b(21)_ 2 d_,b(21) ----_Ao(21) (40)

1-

A_-xA, (41/

and Co is a real constant. We have used the fact that ,_o

satisfies Eq. (30) and have put q=-'d/'d o.
Notice that

.40_0, b-, 3/]0/4

and, consequently, that

A_Co(3)q_oreilr/4exp KXld- 4 1-':---1 ( er°'xl- 1)
\ rOt /

as 2!-, -- oo, (42)

which shows that the solution (39) will match onto the

asymptotic expansion (35) if we take

(_0 : K_--oorCo ( 37"1/6 ) qe - 3A2/3/4r°r. (43)
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Vll. FULLY INTERACTIVE CASE

We now consider the fully coupled case where all the
terms in (13) and (14) are of the same order. We have

already discussed the significance of the various terms in

(13), and the relevant kernel functions are given by (21 )

and (31). However, we have not, as yet, discussed the
nonlinear terms in (14). They account for the back-

reaction of the oblique mode on the plane wave--with the
first group representing a kind of mutual interaction. The

relevant kernel functions are given by 6

K3= --6(x--x') 3 (44)

and

K4= -- 3 (X-- _') (_--x 1) (2if-- _'--xl) (45)

in the inviscid limit.

The last term in Eq. (14), which is quartic in the

oblique mode amplitudes, does not involve the plane-wave

amplitude at all. It is worth noting that all previous anal-
yses of the resonant-triad interaction (e.g., Craik, 5 and

Smith and Stewart 28) involve a corresponding back-

reaction term that is, however, only quadratic in the

oblique-mode amplitudes. The kernel function for this last
term [of Eq. (14)] is given by 6

K5 =3(x--x') { (g+ x'+xl -- 3x 2) (._--X 2) (._-- 2X-I- X 1 )

-- ($+X'-- 2Xl) [ (_?+X'--2Xl )2 3 (ff--X 1)2] }

(46)

in the inviseid limit.

Most of the kernel functions have only been written

down for the inviscid limit. However, they can, in princi-

ple, be modified to include viscosity, but some of the re-

suiting formulas would then be exceedingly complex. It

might therefore be best to account for viscous effects by

numerically solving the relevant inhomogeneous critical-

layer equations subject to the appropriate jump conditions.
This is currently being done. Here we merely note that the

resulting solutions will not be uniformly valid in frequency
for the important class of weak, adverse-pressure-gradient,

boundary-layer flows. This is because the viscous Stokes

layer at the wall eventually contributes a term

(o'c-)3U'c2/(E/o')I/3[2R(o)*A/Uoo)5] 1/2 to the scaled linear

growth rate To when _o* becomes sufficiently small. How-

ever, the solution can easily be made uniformly valid for all

frequencies (except in the immediate vicinity of the lower

branch) by simply replacing the linear growth rates in Eqs.

(13) and (14) (_ and To, respectively) with

4 (o'c-) 3 U; 2

K_tC-k-_ (e/tr)I/aIR (to*A/Uoo)5] 1/2 (47)

and

(O'C--) 3 U; 2

to'roW ( e/tr ) l/3 [2R (to, A/ U oo)5] 1/2. (48)

Figure 6 (adapted from Ref. 6) shows a typical invis-
cid solution to Eqs. (13) and (14). It demonstrates that

the oblique-mode amplitude initially exhibits linear

25

20 f
_15

lO

/
-5 /

-10 ±. '
-2 0 2 _ 6

I

lO

FIG. 6. lnl.4 [ and 1_12olvs _ la(°) I =0.01, arg(a(°))=0, and _=0

(solid: numerical; dotted: asymptotic; dashed: parametric-resonance; dot-

dashed: linear 2-D case).

growth, which is then accelerated in the so-called paramet-
ric resonance stage where the first "nonlinear" term comes

into play in Eq. (13). Notice that the plane-wave ampli-

tude continues to exhibit linear growth in this stage. How-

ever, the cubic self-interaction term quickly comes into

play in (13), and a very rapid (explosive) growth of both

the oblique mode and the plane wave then ensues: once the

scaled oblique-mode amplitude becomes of the same order

as that of the plane wave. (Notice that the unsealed

oblique-mode amplitude is now much large r than that of

the plane wave.) This is due to the presence of the singu-
larity that arises from the oblique-mode self-interaction
discussed in Sec. V. The back-reaction terms now transfer

this singularity to the plane wave. The relevant local as-

ymptotic expansion is still given by Eq. (22) for the ob-

lique mode, while the corresponding result for the plane
wave is given by 6

a 0 _

Ao_ (_-s__.)4+2i_ b as x---,x s. (49)

These formulas were used to obtain the dotted curves in

Fig. 6. Notice how quickly the solution reaches the asymp-

totic stage once the fully nonlinear cubic interaction terms

come into play--especially for the oblique mode.

As in the pure oblique-mode interaction (discussed in

See. V), the flow is again governed by the full Euler equa-

tions in the next stage of evolution when tr= 1 and by the

three-dimensional unsteady triple-deck equations (without
the viscous terms) in the long-wavelength limit 6 tr<l.

(The underlying reasons are discussed in Sec. V.) Zhuk

and Ryzhov 29 show that certain solutions to two-

dimensional, unsteady inviscid triple-deck equations are

determined by the Benjamin-Ono equation, which is

known to possess solitary wave solutions. (A brief account

of the three-dimensional case is given in a follow-up paper

by Zhuk and Rzyhov. 3°) This suggests that the present

solutions might also exhibit this behavior in the long-

wavelength case and that this might play a role in the

overall transition process in weak adverse-pressure-
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dashed: parametric resonance).

gradient boundary layers. 31 The order-one wavelength so-

lutions and subsequent full Euler behavior are probably
more applicable to free shear layers than they are to

boundary layers.

The dashed curve in Fig. 6 is calculated from the an-

alytical solution for the parametric resonance stage that
was discussed in Sec. VI. The dot-dashed curve is obtained

by neglecting the back-reaction effects in (14), in other

words, by using the appropriate linear solution of Eq. (30)

to determine A o in Eq. (13). The close agreement with the

exact solution is due to the fact that Eq. (30) provides the

correct solution for A o in the parametric resonance sta_e,

and the cubic nonlinear term, which does not involve A0,

becomes dominant as soon as the next stage of evolution is

reached. This behavior, which seems to be quite typical for
the inviscid case, may no longer obtain when viscous effects
are included.

Figure 7 shows the effect of wave-number detuning on

the oblique mode. It indicates that increased detuning (1)
has the effect of delaying the onset of cubic nonlinearity

and the attendant explosive growth, and (2) increases the

oscillation in the amplitude curves. These oscillations are

due to energy exchange between the various modes that

interact nonlinearly within the critical layer. Figure 8

25

20

(a) (b) (d) (e)
(c) i

15

10

-5 p i i i i 1

-2 0 2 4 6 8 10

._o2

FIG. 8. lnl.41 vs _. I_C°_l=0.01, arg(a(°))=0, and _/=0, 1, 2, 4, 8,

curves (a)-(e), respectively (solid: numerical; dotted: local asymptotic).

shows the corresponding result for the plane wave. Notice
how abruptly the explosive growth sets in with large de-

tuning.

Equations (24) and (33) can be combined to show
that

d._ ^ 3i^^

_--2=RA +_ A0 A*- i_ tan 2 0 sin 2 0

1 1/3 1

X cos 20(]-_) r(-_)f_f_oolA(xl)12dXl,

(50)

in the viscous limit _.--, co with _=O( 1 ). Figure 9 is a plot,

taken from Mankbadi, Wu, and Lee, 2° of some typical re-

suits computed from Eq. (50) with _= 1 and 0=zr/3. It

shows that the oscillations produced by the self-interaction

term [see discussion following Eq. (27)] continuously re-

duce the parametric resonance effects to the point where

the instability growth rate ultimately returns to its initial
linear rate.

But Eq. (50) is not necessarily the only or even the

most appropriate description of the fully interactive stage
in the large _. limit. Notice, for example, that the paramet-

ric resonance solution (39) and (40) also applies to this

limit. These equations show that the oblique mode contin-
ues to grow [when A o is given by Eq. (30)] and therefore

must eventually become large enough to react back on the

plane wave and possibly interact nonlinearly with itself.

The plane wave and oblique mode will then evolve on a

much faster scale corresponding to O(1) values of J?, as

defined in Eq. (37).

The simplest way to show this is to notice that the
viscous parameter _. can be scaled out of the general equa-

tions (13) and (14) by introducing the scaled dependent
and independent variables (37), (41), and

tl0 _--_-z10/,_4/3 ( 51 )

and then replacing the linear growth rates _ and T0 by the
scaled growth rates _/_1/3 and Ko/_. 1/3, respectively. Then,

aside from the vanishing of the linear growth-rate terms,
the resulting equations will remain unchanged in the limit

_--+ oo, with k [as defined by Eq. (26)] and the barred

variables held fixed. These latter equations do not possess

solutions that satisfy the linear upstream boundary condi-

tions (15), but they do possess solutions that satisfy the
alternative conditions

A_a-(°)eirr/4e b°_, .40--. 1 as E--, -- oo, (52)

where

3

b0_--_2 Jo _2e--g3--2b°¢ dE' (53)

Coo

and therefore match onto the limiting forms of parametric

resonance solution (39) and (40) and the linear plane-
wave solution

-40--e _°_l (54)

as the slow streamwise variable 21 _0.
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The results of the previous section show that these

latter solutions match onto an intermediate viscous para-

metric resonance stage and consequently onto the same

upstream boundary conditions as Eq. (36) and the solu-
tion to Eq. (50) [i.e., Eq. (15) with the tilde replaced by a

caret] provided, of course, that

a(°) = O(Y.q/6e- 3_2/3/4XOr). (55)

This shows that the fully interactive stage is governed

by the reduced viscous equations (30) and (50) whenever

the oblique modes are only algebraically small relative to

the plane wave at the start of parametric resonance, but the

full nonequilibrium equations (13) and (14) are required

whenever the oblique modes are exponentially smaller than

the plane wave at the initiation of resonance. However, the

smaller linear growth rate of the oblique modes could eas-
ily cause the latter situation to occur even when all the

modes are of the same amplitude at the start of the linear

stage. Evidently then, there is a kind of competition among

modes in the initial linear stage that ultimately determines

the nature of the flow in the fully interactive stage. Equa-

tion (50) will also be invalid when the plane wave becomes

strongly nonlinear before back-reaction effects can occur--

which means that competition between modes also occurs

in the parametric resonance stage.

The main contribution to the inner integral in Eq_. (19)
comes from the vicinity of the point x2=x 1 when A-, co,

and it therefore follows from Eq. (25) that

o0

(561

Equations (50)-(56) apply to the Blasius boundary

layer for which the amplitude wave-number scaling (11 )
obtains, 32 R=O(0.-1°), and a_*A/Uoo=O(o "2) over most

of the unstable Reynolds number range. In which case, it

follows from Eqs. (10) and (11) that e=_.0.1°, and

_.= 0.-3/2, and, therefore [in view of Eq. (26)], that both

terms on the fight-hand side of Eq. (48) are of the same

order. Equations (25), (34), (55), and (56) now imply

that the oblique-mode, plane-wave, and spanwise variable

mean-flow amplitude scalings are

6,4=O(6,_1/3)=O(0. 8)

or (57)

__/l_q/6 e - 3_2/3 /4Ror = O (0.(8- q/4 )e - 3/4uRor) ,

6"(6//0 ") 1/3_0= O(EX0.3 ) = O(0.10),

(58)

and

effo = O(e,_) = 0(0.7), (59)

at the start of parametric resonance. The plane wave and

oblique-mode amplitudes will be 0(0 -9) and O(0.7), respec-

tively, in the fully interactive stage when the scaling (55)
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applies. Equations (30) and (50) were first obtained by

Mankbadi, Wu, and Lee, 1° who derived them directly from

the Navier-Stokes equations.

Wu 9 shows that Eq. (50) also applies to accelerating

boundary layers with O( 1 ) pressure gradients. In this case,

R=O(0--6), o_*A/Uo_ is still 12 O(02), and the amplitude

wave-number scaling (12) now applies over most of the

unstable wave-number range. Then it follows from Eqs.
(10) and (12) that 6=0- 7/2, ,_=0--1/2, and, consequently,

that both terms on the right-hand side of Eq. (48) are

again of the same order. Equations (25), (34), (55), and

(56) now show that the oblique-mode, plane-wave, and
spanwise variable mean-flow amplitude scales are

or

C4 = O( E)_ 1/3 ) = O( 0 "10/3 ) (60)

eA22/15e - 3_2/3/4rOr= O( 0-(1/3) (10--q/4) e- 3/4ol/3_0r),

1/3 _r_5/2x 1/3. (61)
eLo ) 4,(;) oo(ol,3)o,o,

and

ezT0=o(eX) =0(o_), (62/

at the start of parametric resonance.
However, in this case, Wu 9 shows that there is a thin

diffusion layer near the wall where the mean flow distor-

tion is even larger than this, namely 0(0-8/3). In any event,

the important result is that the nonlinearly induced mean-

flow distortion is always larger than the initial oblique-
mode instability wave in the viscous limit _,--, _, even in

the main part of the shear layer. It is no coincidence that

both of these flows correspond to the long wave limit 0---,0,

since viscous instabilities are always of the long-wavelength

type at high Reynolds numbers.

VIII. CONCLUDING REMARKS

There are a large number of shear flows in which the

oblique-mode instability waves exhibit the most rapid

growth--either directly from the initial linear stage or in-

directly through an intermediate parametric resonance

stage. The cubic self-interaction between the oblique-mode

instability waves is one of the first strictly nonlinear inter-

actions to come into play as the instability waves evolve
downstream in such flows. This interaction will have a

dominant effect on the subsequent instability-wave devel-

opment producing a local singularity (and consequently

explosive growth) at a finite downstream position in the

inviscid limit and sometimes producing viscous decay

when viscosity is present.

The more or less general case is described by Eqs. (13)

and (14), but depending on the initial amplitude ratio and

the external parameters, various limiting forms of these

equations can apply to different regions of the flow, giving

rise to a wide variety of different phenomena. While these
equations do not describe the nonlinear plane-wave behav-

ior discussed in See. VI, arguments similar to those given

in the previous section 6'25 show that even this strongly non-

linear flow eventually evolves into a fuUy interactive stage

that is described by the weakly nonlinear equations (13)

and (14) (but again with the linear growth terms omit-

ted). The nonlinear interaction also produces a spanwise

variable mean-flow change in the linear flow outside the

critical layer, which is of the same order as the oblique-

mode instability waves in the inviscid case and can be even

larger than these in the strongly viscous case.
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